Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

New girdle-like $\mathbf{M o}_{18}$ polyanions linked into chains

Guang Liu and Shi-Wei Zhang*

Institute of Physical Chemistry, Peking University, Beijing 100871, People's Republic of China
Correspondence e-mail: zsw@chem.pku.edu.cn

Received 2 July 2001
Accepted 15 October 2001
Online 23 January 2002
From the reduction of heptamolybdate, a polyoxomolybdate was obtained with the formula $\left[\mathrm{Na}_{6}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\left(\mathrm{NH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{COO}\right)_{2}^{-}\right]^{4+} .\left\{\mathrm{Na}^{+}\left[\mathrm{H}_{9} \mathrm{Mo}_{10}{ }^{\mathrm{VI}} \mathrm{Mo}_{8}^{\mathrm{V}} \mathrm{O}_{56}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}\right)_{2}^{-}\right]^{5-}\right\}^{4-}$. $\cdot 20 \mathrm{H}_{2} \mathrm{O}$, i.e. heptasodium nonahydrogen tetracarbamate hexadecaaquahexapentacontaoxaoctadecamolybdate(V,VI) icosahydrate. The 18 Mo atoms are connected by bridging O atoms to form a centrosymmetric girdle-like structure, in which $\mathrm{Mo}^{\mathrm{V}}-\mathrm{Mo}^{\mathrm{V}}$ units are found. $\mathrm{An} \mathrm{Na}^{+}$cation occupies the central hole of the girdle, while four Na^{+}cations are bonded to the O atoms on the girdle edge. The girdles are linked into a onedimensional chain by the other Na^{+}cations.

Comment

Polyoxometalates are molecular metal-oxygen clusters that are of fundamental and practical interest (Pope, 1983; Pope \& Müller, 1994). One large branch are the polyoxomolybdates. Traditional high-nuclearity oxomolybdenum complexes contain $\mathrm{Mo}^{\text {VI }}$ centers only (iso- and heteropolymolybdates) or both Mo^{V} and $\mathrm{Mo}^{\mathrm{VI}}$ centers with delocalized d-electrons (heteropoly blues) (Chae et al., 1993). However, a new family of polyoxomolybdates whose $\mathrm{Mo}^{\mathrm{V}} d$-electrons are localized in $\mathrm{Mo}^{\mathrm{v}}-\mathrm{Mo}^{\mathrm{v}}$ single bonds has emerged in recent years (Chae et al., 1993; Müller et al., 1998, 1999). Chae et al. (1993) concluded that all these compounds have $\left[\mathrm{Mo}_{2}^{\mathrm{V}} \mathrm{O}_{8}\right]^{6-}$ units (see Scheme below).

Within this unit, the $\mathrm{Mo}^{\mathrm{V}}-\mathrm{Mo}^{\mathrm{v}}$ bond distance lies in the range $2.5-2.7 \AA$, while the $\mathrm{Mo}^{\mathrm{V}}-\mathrm{O}$ bond distances are in the range 1.6-1.8 \AA for $\mathrm{O} a, 1.9-2.0 \AA$ for $\mathrm{O} b$ and 2.0-2.2 \AA for $\mathrm{O} c$. Frequently, but not always, a sixth oxygen ligand is weakly bonded to each Mo^{\vee} center trans to the $\mathrm{O} a$ ligand. From the reduction of heptamolybdate in an aqueous solution of glycine, we have synthesized several oxomolybdenum compounds containing $\left[\mathrm{Mo}_{2}^{\mathrm{V}} \mathrm{O}_{8}\right]^{6-}$ units (Liu, Liu et al., 2000),
among which are the two interesting Mo_{18} polyanions $\left[\mathrm{Ca}_{4}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{22}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}\right]^{6+} .\left\{\mathrm{Ca}^{2+}\left[\mathrm{Mo}_{10}^{\mathrm{VI}} \mathrm{Mo}_{8}^{\mathrm{V}} \mathrm{O}_{52}(\mathrm{OH})_{4}-\right.\right.$ $\left.\left.\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}\right]^{8-}\right\}^{6-} \cdot 20 \mathrm{H}_{2} \mathrm{O}$, (II), and $\left[\mathrm{Ca}_{3}^{2+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{13^{-}}\right.$ $\left.\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{3}\right]^{6+} \cdot\left\{\mathrm{Ca}^{2+}\left[\mathrm{Mo}_{10}^{\mathrm{VI}} \mathrm{Mo}_{8}^{\mathrm{V}} \mathrm{O}_{52}(\mathrm{OH})_{4}\left(\mathrm{NH}_{3}^{+} \mathrm{CH}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{COO}^{-}\right)_{2}\right]^{8-}\right\}^{6-} \cdot 19 \mathrm{H}_{2} \mathrm{O}$, (III) (Liu, Wei et al., 2000). We report here the structure of $\left[\mathrm{Na}_{6}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}\right]^{4+}$. $\left\{\mathrm{Na}^{+}-\right.$ $\left.\left[\mathrm{H}_{9} \mathrm{Mo}_{10}^{\mathrm{VI}} \mathrm{Mo}_{8}^{\mathrm{V}} \mathrm{O}_{56}-\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}\right]^{5-}\right\}^{4-} \cdot 20 \mathrm{H}_{2} \mathrm{O}$, (I) , a new member of this family.

(I)

Compound (I) has an Mo_{18} centrosymmetric girdle-like structure (Fig. 1). The Mo-O framework of the polyanion is approximately the same as those of (II) and (III). Every Mo atom is coordinated by six O atoms and sits at the center of a distorted octahedron. Eight Mo-O octahedra share edges and vertices with each other to form an octagonal ring. Two octagonal rings, related by a symmetry center, overlap through $16 \mu_{3}-\mathrm{O}$ atoms to form a girdle with a slight gradient. Two Mo centers are situated on the outer edges of the girdle and connect to other Mo centers through four μ - O atoms. A characteristic of this complex is the existence of Mo-Mo single bonds between Mo1 and Mo2, and between Mo3 and Mo4, as well as between their symmetrically equivalents. The bond distances are in the range given by Chae et al. (1993). The bond-valence sums of these eight Mo atoms are calculated as 5 according to bond-valence theory (Brown, 1981). The coordination environment of these Mo^{v} centers is also the same as described by Chae et al. (1993), showing $\left[\mathrm{Mo}_{2}^{\mathrm{V}} \mathrm{O}_{10}\right]^{10-}$ units which can be divided into $\left[\mathrm{Mo}_{2}^{\mathrm{V}} \mathrm{O}_{8}\right]^{6-}$ units and weakly coordinated O atoms trans to the terminal O atoms. Two glycine molecules connect Mo1 and Mo4 of the other ring in a μ_{2}-bridging mode with their carboxyl group. The structural characteristics described above are similar to those of (II) and (III), and can be regarded as common characteristics of this series of compounds.

There are seven Na^{+}cations in (I). One $\mathrm{Na}^{+}(\mathrm{Na} 1)$ is located at the center of symmetry in the central hole of the girdle and is coordinated by six O atoms of the Mo^{V} centers. The other six are on the periphery. Na 3 is captured by the terminal O atom (O21) of Mo7 and Na4 is captured by the terminal O

Figure 1
The structure of (I) with some water molecules and all H atoms omitted. Key: Mo (large hatched spheres), Na (crossed), O (shaded), C (small hatched) and N (stippled).

Figure 2
The linking of girdles into one-dimensional chains.
atom (O23) of Mo9. They stretch out of the girdle but are almost on the ring planes. Na 3 and Na 4 are connected by two $\mu_{2}-\mathrm{O}$ atoms while coordinated by three water molecules each. Na 2 sits above the ring plane and is coordinated by six O atoms, two (O18 and O20) from one polyanion, two (O19 and O 25) from another polyanion, and two (O32 and its symmetrically equivalent) from the glycine molecules that also coordinate to Na . The four terminal O atoms coordinate to one Na 2 cation each, but O 32 bridges two adjacent Na 2 atoms in a μ_{2} mode. Thus, there are two Na 2 atoms cations between two polyanions and these Na^{+}cations link the girdles into a one-dimensional chain (Fig. 2).

The position of Na 1 in (I) is the same as that of Ca 1 in (II) and (III). Generally speaking, Na 2 occupies a similar position to Ca 2 , while Na 3 and Na 4 occupy similar positions to Ca 3 ,
but their number and coordination details are obviously different. However, the O atoms of the polyanion that coordinate to them are similar. O 18 and O 25 , the O atoms above the ring planes, as well as O 21 and O 23 , those stretching out of the girdle but almost on the ring planes, all take part in coordination to the Na^{+}or Ca^{2+} cations. These terminal O atoms can be regarded as the active positions of the polyanions. The similarity of a girdle-like backbone and the active positions of these three compounds shows that they can be classified into a structural type with a formula $\left[\mathrm{Mo}_{10}{ }^{\mathrm{VI}}\right.$ $\mathrm{Mo}_{8}^{\mathrm{V}} \mathrm{O}_{56}$ (glycine) $\left.)_{2}\right]^{14-}$. This type of structure, like the famous structural types of the Keggin and Dawson anions, can be modified by cations and organic acids while keeping the main structure unchanged.

There are ten water molecules not connected to metal ions per asymmetric unit. One of these waters of hydration is divided between two sites ($\mathrm{O} W 14$ and $\mathrm{OW} 15,1.54 \AA$ apart), with occupancies that were fixed at 0.75 and 0.25 , respectively, during refinement. No H atoms, except those of the methylene C atom of glycine, were included in the structure determination.

Experimental

$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.70 \mathrm{~g}, 0.57 \mathrm{mmol}), \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}(3.04 \mathrm{~g}$, $40.5 \mathrm{mmol}), \mathrm{NaCl}(2.00 \mathrm{~g}, 34.2 \mathrm{mmol})$ and $\mathrm{N}_{2} \mathrm{H}_{4} \cdot \mathrm{H}_{2} \mathrm{SO}_{4}(0.20 \mathrm{~g}$, $1.5 \mathrm{mmol})$ were added to water $(60 \mathrm{ml}, 3.3 \mathrm{~mol})$ and the solution was stirred for 10 min whereupon a color change occurred from yellow to green. The solution was allowed to stand undisturbed for one day over which time the color changed to red. Red crystals were obtained after 14 d , together with a red precipitate. The crystals were carefully picked from the precipitate and washed quickly with cold water and dried in air at room temperature.

Crystal data

$\left[\mathrm{Na}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{16}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}\right)_{2}\right]$--
$\left\{\mathrm{Na}\left[\mathrm{H}_{9} \mathrm{Mo}_{10}^{\mathrm{VI}} \mathrm{Mo}_{8}^{\mathrm{V}} \mathrm{O}_{56}\left(\mathrm{NH}_{2} \mathrm{CH}_{2}-\right.\right.\right.$
$\left.\mathrm{COO})_{2}\right] \cdot \cdot 20 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=3737.75$
Triclinic, $P \overline{1}$
$a=11.913$ (2) Å
$b=15.027$ (3) \AA
$c=15.466$ (3) \AA
$\alpha=114.37$ (3) ${ }^{\circ}$
$\beta=99.00(3)^{\circ}$
$\gamma=99.17$ (3) ${ }^{\circ}$
Data collection
Rigaku AFC-6S diffractometer
2θ scans
Absorption correction: ψ scan
(Coppens et al., 1965)
$T_{\text {min }}=0.494, T_{\text {max }}=0.886$
8848 measured reflections
8499 independent reflections
6755 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.179$
$S=1.08$
8499 reflections
592 parameters
H -atom parameters constrained

$$
\begin{aligned}
& V=2412.6(8) \AA^{3} \\
& Z=1 \\
& D_{x}=2.573 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=5.0-11.2^{\circ} \\
& \mu=2.42 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Sheet, red-brown } \\
& 0.40 \times 0.25 \times 0.05 \mathrm{~mm} \\
& \\
& R_{\text {int }}=0.033 \\
& \theta_{\text {max }}=25^{\circ} \\
& h=-14 \rightarrow 13 \\
& k=0 \rightarrow 17 \\
& l=-18 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \text { every } 400 \text { reflections } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1074 P)^{2}\right. \\
+22.8082 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.004 \\
\Delta \rho_{\max }=2.36 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-2.03 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.00063 (17)

Table 1
Selected interatomic distances (\AA).

Mo1-O16	$1.691(7)$	Mo5-O6	$1.927(6)$
Mo1-O11	$1.954(6)$	Mo5-O13	$1.942(7)$
Mo1-O1	$1.967(6)$	Mo5-O4	$2.205(6)$
Mo1-O3	$2.050(7)$	Mo5-O1	$2.320(7)$
Mo1-O30	$2.173(7)$	Mo6-O15	$1.702(7)$
Mo1-O6	$2.182(7)$	Mo6-O25	$1.717(8)$
Mo1-Mo2	$2.6033(13)$	Mo6-O8	$1.936(7)$
Mo2-O17	$1.687(8)$	Mo6-O13	$1.949(7)$
Mo2-O11	$1.943(7)$	Mo6-O4	$2.209(6)$
Mo2-O2	$2.001(6)$	Mo6-O12	$2.264(7)$
Mo2-O1	$2.006(7)$	Mo7-O21	$1.700(7)$
Mo2-O12	$2.134(7)$	Mo7-O18	$1.701(8)$
Mo2-O4	$2.305(6)$	Mo7-O14	$1.937(7)$
Mo2-Mo9	$3.2038(15)$	Mo7-O8	$1.973(7)$
Mo3-O22	$1.687(8)$	Mo7-O9	$2.211(6)$
Mo3-O10	$1.920(7)$	Mo7-O7	$2.291(7)$
Mo3-O2	$1.960(6)$	Mo8-O20	$1.711(8)$
Mo3-O5	$2.028(7)$	Mo8-O26	$1.719(8)$
Mo3-O7	$2.101(6)$	Mo8-O3	$1.922(7)$
Mo3-O9	$2.301(7)$	Mo8-O14	$1.938(7)$
Mo3-Mo4	$2.5974(18)$	Mo8-O9	$2.236(6)$
Mo4-O27	$1.703(8)$	Mo8-O5	$2.333(7)$
Mo4-O10	$1.943(6)$	Mo9-O23	$1.710(8)$
Mo4-O5	$1.971(7)$	Mo9-O28	$1.725(8)$
Mo4-O6	$2.059(7)$	Mo9-O12	$1.960(6)$
Mo4-O29	$2.169(6)$	Mo9-O7	$1.969(7)$
Mo4-O3	$2.191(6)$	Mo9-O2	$2.228(7)$
Mo5-O19	$1.701(8)$	Mo9-O8	$2.250(7)$
Mo5-O24	$1.728(8)$		

Symmetry code: (i) $1-x, 1-y, 1-z$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in

SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (projects No. 29733080 and 29871003).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1340). Services for accessing these data are described at the back of the journal.

References

Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. 2, ch. 14, pp. 1-30. New York: Academic Press.
Chae, H. K., Klemperer, W. G. \& Marquart, T. A. (1993). Coord. Chem. Rev. 128, 209-224.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 10351038.

Liu, G., Liu, J., Wei, Y. G., Liu, Q. \& Zhang, S. W. (2000). Acta Cryst. C56, 822823.

Liu, G., Wei, Y. G., Liu, J., Liu, Q., Zhang, S. W. \& Tang, Y. Q. (2000). J. Chem. Soc. Dalton Trans. pp. 1013-1014.
Molecular Structure Corporation (1994). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Müller, A., Krickemeyer, E., Bögge, H., Schmidtmann, M. \& Peters, F. (1998). Angew. Chem. Int. Ed. 37, 3360-3363.
Müller, A., Polarz, S., Das, S. K., Krickemeyer, E., Bögge, H., Schmidtmann, M. \& Hauptfleisch, B. (1999). Angew. Chem. Int. Ed. 38, 3241-3245.

Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Springer-Verlag: New York.
Pope, M. T. \& Müller, A. (1994). Editors. Polyoxometalates from Platonic Solids to Anti-Retroviral Activity. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

